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We prove that if the zeros of two perfect splines p and q interlace, then the zeros
of p$ and q$ also interlace. This is an extension of the classical result concerning
algebraic polynomials proved by V. A. Markov. � 1999 Academic Press
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1. INTRODUCTION

In his fundamental paper [10] Vladimir Markov studied the problem of
estimating the value of the k th derivative of a polynomial P of degree n,
0<k�n, in terms of its uniform norm. He established the remarkable
inequality

&P(k)&�&T (k)
n & &P&, k=1, ..., n.

Here & }& denotes the uniform norm on [&1, 1] and Tn(x) is the n th
degree Tchebycheff polynomial. The results and the methods developed in
this paper have been so important that even more than 20 years after its
appearance, a German translation of a slightly shorter version was
republished in Mathematische Annalen with a preface by Professor
S. N. Bernstein. A major ingredient in Markov's ingenious proof is the
following lemma concerning the zeros of the algebraic polynomials.

Lemma of Markov. Assume that the zeros of the polynomials
u(x) :=(x&x1) } } } (x&xn) and v(x) :=(x& y1) } } } (x& yn) satisfy the inter-
lacing conditions

x1� y1�x2� } } } �xn� yn .
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Then the zeros t1� } } } �tn&1 of u$(x) and the zeros {1� } } } �{n&1 of v$(x)
interlace too, that is,

t1�{1�t2� } } } �tn&1�{n&1 . (1)

Moreover, if x1< } } } <xn and at least one of the inequalities xi� yi ,
i=1, ..., n, is strict, then all inequalities in (1) are strict.

Letting yn tend to infinity one may obtain a similar result for polyno-
mials u and v of degree n and n&1, respectively.

Markov's lemma became a delicate and important tool in the study of
various extremal problems for algebraic polynomials (see [17]). In par-
ticular it has been very useful in the works concerning the estimation of
functionals of P$ in the space of polynomials (see [1, 4, 5, 13�15, 17]).

We are going to prove a similar result for perfect splines. Recall that a
perfect spline of degree r with knots !1< } } } <!n&r is any expression of the
form

p(t)= :
r

j=1

:j t j&1+c _tr+2 :
n&r

i=1

(&1) i (t&! i)
r
+ &

with real coefficients [:j] and c where, as usual, tm
+=tm if t�0, and zero

otherwise. A characteristic property of the perfect spline p(t) is that
| p(r)(t)|=const. for each t except the knots !1 , ..., !n&r . Perfect splines
appear prominently in various extremal problems in classes of differentiable
functions, and particularly in W r

�[a, b],

W r
�[a, b] :=[ f # C (r&1)[a, b] : f (r&1) abs. cont., & f (r)&�<�],

&g&� :=ess sup
t # [a, b]

| g(t)|.

Just to give some examples recall that Karlin [6, 7] (see also de Boor [3])
proved the following: Given any data [xi , fi]n+1

i=1 , :�x1< } } } <xn+1�b,
there exists a perfect spline s of degree r with at most n&r knots such that

s(xi)= fi for i=1, ..., n+1.

Moreover, s is the smoothest function in W r
�[a, b] that interpolates the

data, that is,

&s(r)&��& f (r)&�

for each f from W r
�[a, b] satisfying the interpolation conditions f (xi)= f i ,

i=1, ..., n+1. An immediate consequence thereof is the following result
which is known as the fundamental theorem of algebra for perfect splines.
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Theorem A. Given the points x=(x1 , ..., xn), x1< } } } <xn , there exists
a unique (up to multiplication by a constant) non-trivial perfect spline of
degree p with at most n&r knots satisfying the conditions

p(xi)=0, i=1, ..., n.

Moreover, p has exactly n&r knots.

The proof of this theorem in a more general form involving multiple
zeros (and Birkhoff type zeros), as well as other properties of perfect
splines can be found, for example, in [2].

The perfect spline p of Theorem A, normalized by the condition
p(r)(xn)=1, will be denoted in this paper by p(x; t).

The next important extremal property of p(x; t) (proved in [11]), which
in and of itself would justify the interest in these functions, is the following:
Let a�x1< } } } <xn�b. Then for every t # [a, b],

max[ | f (t)|: f # W r
�[a, b], & f (r)&��1, f (x i)=0, i=1, ..., n]=| p(x; t)|.

Therefore the perfect spline vanishing at x represents the error of the best
method of approximation of functions from W r

�[a, b] on the basis of their
values at x (see [2] for details).

Perfect splines can be considered as natural generalizations of algebraic
polynomials (which are perfect splines without knots). Thus one would
expect that some of the properties of the algebraic polynomials are
inherited by their generalizations. In particular, both simple examples and
computer simulations have indicated that Markov's interlacing property
seems to hold for perfect splines. Here we give proof of this fact.

This result could be useful in the study of Kolmogorov type inequalities
concerning estimation of the derivatives of functions from W r

�[a, b] which
are bounded on [a, b] or on certain discrete subsets. An interesting
problem of this kind was solved by Pinkus [12].

2. MARKOV'S LEMMA FOR GENERALIZED POLYNOMIALS

Our approach is based on the following observation mentioned already
in [1].

Markov's interlacing property is equivalent to the statement: Each zero '
of the derivative of an algebraic polynomial P(x) :=(x&x1) } } } (x&xn) is a
strictly increasing function of xk in the domain x1< } } } <xn .

We shall prove the equivalence even for generalized polynomials with
respect to an arbitrary Tchebycheff system. Note that having shown this
equivalence the Markov lemma would follow easily since, as is known,
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every zero ' of the derivative of P is an increasing function of xk . A short
proof of this is obtained by differentiating the identity

0=
P$(')
P(')

= :
n

i&1

1
'&xi

with respect to xk . One gets

0=&\ :
n

i=1

1
('&xi)

2+ �'
�xk

+
1

('&xk)2 .

This yields

�'
�xk

>0

and thus, the strict monotonicity of '.
The above observation provides a new proof of Markov's lemma which

admits extensions to other systems of polynomial like functions. The main
steps in this proof are: (i) the equivalence and (ii) the monotonicity. We
shall illustrate our method by fulfilling both of these two tasks on a certain
class of smooth generalized polynomials. Then, in the next section, we shall
apply this approach to perfect splines with even more care.

We first describe the class of generalized polynomials.
Let .� :=[.1(x), ..., .n(x)] be an arbitrary system of continuous func-

tions on [a, b]. Assume that .� is a Tchebycheff system (or briefly,
T-system) on [a, b], that is,

.1(t1) } } } .n(t1)

det _ b . . . b &{0

.1(tn) } } } .n(tn)

for each t=(t1 , ..., tn) such that a�t1< } } } <tn�b. Assume, in addition,
that the functions [.1(x), ..., .n&1(x)] also constitute a T-system on
[a, b]. Consider the induced system ,� :=[,0 , ..., ,n] defined by

,0(x)=1,

,k(x)=|
x

a
.k(t) dt, k=1, ..., n.

It is a Tchebycheff system too. Besides, [,0 , ..., ,n&1] is a T-system on
[a, b]. Then fore every given set of points x=(x1 , ..., xn) with a�
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x1< } } } <xn�b, there exists a unique generalized polynomial , of the
form

,(x)=,n(x)+ :
n&1

k=0

:k+1,k(x)

which vanishes at x1 , ..., xn . We shall denote this polynomial by ,(x; t).
Note that ,(x; t) has no other zeros except x and ,$(x; xi){0 for
i=1, ..., n. Indeed, otherwise Rolle's theorem would imply that ,$(x; t) has
at least n distinct zeros, a contradiction to the assumption that .1 , ..., .n

is a Tchebycheff system. Thus ,(x; t) changes sign in x1 , ..., xn and clearly
each subinterval (xi , xi+1) contains exactly one zero of ,$(x; t).

The next property of the generalized polynomials ,(x; t) will play a
central role in the sequel.

Lemma 1. Assume that the points x=(x1 , ..., xn), x1< } } } <xn , and
y=( y1 , ..., yn) interlace, that is,

x1� y1� } } } �xn� yn ,

with at least one strict inequality xi< yi . Then there is no point ' # [a, b] for
which

,$(x; ')=,$(y; ')=0.

Proof. Assume the contrary. Let ' be a point from [a, b] for which
,$(x; ')=,$(y; ')=0. Since ' is a critical point of ,(x; t), it should lie
between two consecutive zeros of ,(x; t), say in (xj , xj+1). Note that
,(y; '){0. Indeed, if ,(y; ')=0, then '= yj and yj would be a double zero
of ,(y; t), a contradiction to the remark above. Consider the polynomial

Q(t) :=,(x; t)&:,(y; t) with :=
,(x; ')
,(y; ')

.

Clearly Q(')=Q$(')=0. If x and y interlace strictly (i.e., if x1<y1<
x2< } } } <xn<yn), then

Q(xi) Q(xi+1)=:2,(y; xi) ,(y; xi+1)<0

and Q(t) has an odd number of zeros in each subinterval (xi , xi+1),
i=1, ..., n&1. Thus Q has at least one zero in (x i , xi+1) for i{ j. Beside,
Q(t) has a double zero at ' and changes sign in a certain point
t0 # (xj , xj+1). There are two possibilities:
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(i) t0 {'. In this case Q has at least n+1 zeros situated at n distinct
points (' is a double zero). Then, by Rolle's theorem, Q$ would have at
least n distinct zeros. Since Q # span[.1 , ..., .n] and .� is a T-system, this
implies Q$#0 and consequently Q#0, which is impossible since the zeros
of ,(x; t) and ,(y; t) do not coincide.

(ii) t0=', i.e., Q(t) has a double zero at ' and changes sign there.
Then Q$(t) vanishes at ' and does not change sign in a neighborhood of
'. Hence ' can be counted as a double zero for Q$. In addition, Q$ has at
least n&2 other zeros out of (xj , xj+1). But Q$ # span[.1 , ..., .n] and .� is
a T-system. Then, by a known result about continuous T-system (see [9,
Theorem 1.1, Chap. II], the total number of zeros of Q$, counting the
double zeros twice, should not exceed n&1, provided Q$ is a non-zero
polynomial. So, we conclude that Q#0.

In the remaining case when not all inequalities xi� yi re strict one can
see similarly that Q$ has at least n zeros, counting eventually ' as a double
zero. As a hint, consider for example the case when

xi= yi for i=k, ..., k+m&1, and x i< yi , i=k&1, i=k+m.

Clearly ,(y; t) has exactly m+1 zeros in (xk&1 , xk+m). Assume that m is
odd. Then ,(y; t) has an even number of sign changes in (xk&1 , xk+m) and
therefore

sign Q(xk&1)=&sign :,(y; xk&1)=&sign :,(y; xk+m)=sign Q(xk+m).

Then Q has also an even number of zeros in (xk&1 , xk+m). This shows that
in addition to xk , ..., xk+m&1 , Q has at least one more zero in
(xk&1 , xk+m). Thus, to each subinterval (x i , xi+1), i=k&1, ..., k+m&1,
we can assign a zero of Q. Note that ', begin a double zero of Q, is not
counted here. In this way we come again to the conclusion that Q has in
total at least n+1 zeros in [a, b]. This leads to a contradiction like in the
previous case. The proof is complete. K

The Equivalence. We shall show that the Markov interlacing property
for the generalized polynomials is equivalent to the monotonicity of every
zero ' of the derivative ,$(x; t) with respect to each of the zeros of ,(x; t).

Theorem 1. Assume that .� :=[.1(x), ..., .n(x)] is an arbitrary
T-system of continuous functions on [a, b] such that [.1(x), ..., .n&1(x)] is
also a T-system on [a, b]. Let ,� :=[,0(x), ..., ,n(x)] be the corresponding
induced system. If one of the following two statements holds, then the other
holds too;
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(i) Assume that the points x=(x1 , ..., xn) and y=( y1 , ..., yn) interlace
with at least one strict inequality xi< yi . Then the zeros of ,$(x; t) and
,$(y; t) interlace strictly.

(ii) Each zero ' of ,$(x; t) is a strictly increasing function of xk on
a�x1< } } } <xn�b for each k # [1, ..., n].

Proof. Assume that (ii) holds. Given x and y, consider the family of
polynomials ,(x(*); t), where

x(*) :=(x1(*), ..., xn(*)) and xk(*) :=(1&*) xk+*yk .

Clearly x(0)=x, x(1)=y. By the assumption, each zero 'j (*)
( j=1, ..., n&1) of ,$(x(*); t) is a strictly increasing function of the zeros
x1(*), ..., xn(*). Then 'j (*) is a strictly increasing function of * in [0, 1].
Thus 'j (*) will traverse, increasing monotonically, the interval [tj , {j]
defined by the zeros [ti] and [{i] of ,$(x; t), ,(y; t), respectively, when *
goes from 0 to 1. Hence

tj�'j (*) for * # [0, 1].

In order to prove that t1 , ..., tn&1 interlace with '1(*), ..., 'n&1(*) for each
* # [0, 1], and particularly with {j :='j (1), j=1, ..., n&1, we have to show
that

'j&1(*)�tj for * # [0, 1] and j=2, ..., n&1.

Assume the contrary. Then 'j&1(*)=t j for some * # (0, 1] and therefore
,$(x(*); tj)=,$(x; tj)=0. This conclusion contradicts Lemma 1 since x and
x(*) interlace. Therefore ['j (*)] interlace with [ti] and the Markov
property (i) is proved.

The converse follows easily: If (i) holds, then a small increase = of xk will
produce two interlacing sequences

x=(x1 , ..., xn) and x= :=(x1 , ..., xk&1 , xk+=, xk+1 , ..., xn)

with one strict inequality, namely xk<xk+=. Then the corresponding
sequences of the derivative zeros

t1 , ..., tn&1 and t1(=), ..., tn&1(=)

will interlace strictly. This implies ti<ti (=), which means strict
monotonicity. The theorem is proved. K

Taking into account the remark concerning the monotonicity of ' in case
of algebraic polynomials, we can derive the Markov lemma from
Theorem 1.
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Remark. The main reason we gave Theorem 1 was to present the
method. We did this for a certain class of T-systems. However the method
applies to a more general situation involving multiple zeros, where some of
the points x1 , ..., xn may coalesce. In this case one should consider
Extended Tchebycheff systems �0 , ..., �n (i.e., such that any non-zero
generalized polynomial a0�0(t)+ } } } +an�n(t) has no more than n zeros,
counting multiplicities (see [8])). It is not difficult to see that a corre-
spondingly modified version of Lemma 1, and consequently of Theorem 1,
holds in this more general setting.

The trigonometric case is not governed by Theorem 1 but it can be
proved in the same way even for any system of (b&a)-periodic functions
�0 , ..., �2n which form a T-system on [a, b) and such that the �$0 , ..., �$2n is
also a T-system there. We omit the details.

The monotonicity in the trigonometric case can be shown using the
identity

{$(x)
{(x)

=
1
2

:
2n

k=1

cot
x&xk

2

which holds for every trigonometric polynomial

{(x)=sin
x&x1

2
} } } sin

x&x2n

2

with zeros 0=x1< } } } <x2n<2?. Differentiating it with respect to xk at
the zero ' of {$ we get

�'
�xk

=
1

sin2('&xk)�2<\ :
2n

i=1

1
sin2('&x i)�2+>0

and thus ' is strictly monotone. This proves the Markov interlacing
property for trigonometric polynomials.

Let u and v be two trigonometric polynomials of degree n with 2n distinct
zeros [xi]2n

1 and [ yi]2n
1 , respectively, such that

x1� y1� } } } �x2n� y2n<x1+2?

with at least one strict inequality xi< yi . Then the zeros of u$ and v$ interlace
strictly, that is,

t1<{1< } } } <t2n<{2n<t1+2?.

The Monotonicity. This is the difficult part of proving that certain
systems possess the Markov interlacing property. In the algebraic and the
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trigonometric case this was proven using the explicit expression of the
ratio f $� f in terms of the zeros of f. Unfortunately there is no such simple
relation in the case of generalized polynomials. We present here another
method of establishing monotonicity for a quite general class of T-systems.

Theorem 2. Let .� and ,� be given as in Theorem 1. Then each zero ' of
,$(x; t) is a strictly increasing function of xk (k=1, ..., n) in a�x1< } } } <
xn�b.

Proof. Let x=(x1 , ..., xn) be an arbitrary set of points such that a�
x1< } } } <xn�b. For fixed k and sufficiently small =>0, consider the set

x= :=(x1 , ..., xk&1 , xk+=, xk+1 , ..., xn).

Denote by ['j (=)]n&1
1 the zeros of ,$(x= ; t). We claim that 'j (=)>'j (0) for

a sufficiently small =>0 and each j=1, ..., n&1. This would imply the
theorem.

Assume the contrary. Then ' j (=)�'j (0) for some j and some small =>0.
The equality can not happen because of Lemma 1. Thus the inequality
above is strict. Let us now move xj (respectively xk+=, in the case j=k)
ahead, towards xj+1 , denoting the new position of xj by x+

j . Since all the
time we have x+

j <'+
j <x j+1 , where '+

j is the critical point associated
with the new system of points, and since 'j (=)<'+

j for x+
j ='j (=), we will

get 'j (=)='+
j for some x+

j between xj and 'j (=). But this contradicts
Lemma 1, since x and the translated system (with x+

j and xk+= instead of
xj and xk , in case j{k, and with x+

j instead of xk , in case j=k) interlace.
Thus, we proved that 'j is a strictly increasing function of xk . The theorem
is proved. K

As an immediate consequence of Theorem 1 and Theorem 2 we get the
following extension of the Markov lemma.

Corollary 1. Let ,� =[1, ,1(t), ..., ,n(t)] be an arbitrary system of
continuously differentiable functions on [a, b] (with ,0(t)=1) such that
,$1 , ..., ,$k constitute a T-system for k=n&1 and k=n. Suppose that the
zeros of ,(x; t) and ,(y; t) interlace with at least one strict inequality. Then
the zeros of ,$(x; t) and ,$(y; t) interlace strictly.

3. PERFECT SPLINES

We shall assume in this section that r and n are fixed integers such that
r>0, n�r. As we mentioned in the introduction, for any system of points
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x=(x1 , ..., xn), x1< } } } <xn , there exists a unique perfect spline p(x; t) of
degree r with at most n&r knots which satisfies the conditions

p(x; xk)=0, k=1, ..., n,

and is normalized by p(r)(x; xn)=1. We are going to study the Markov
interlacing property for p(x; t). First we recall some known facts concern-
ing p(x; t) which will be needed in the sequel (see [2] for details).

(a) For each x1< } } } <xn the spline p(x; t) has no other zeros
except x1 , ..., xn and all they are simple.

(b) p(x; t) has exactly n&r knots. We shall denote them by
!1 , ..., !n&r .

(c) The zeros x and the knots ! of the perfect spline p(x; t) satisfy the
Schoenberg�Whitney interlacing condition

!i&r<x i<!i , i=1, ..., n, (2)

when meaningful.

(d) p$(x; t) has exactly n&1 zeros '1< } } } <'n&1 and all they are
simple. (In case r=1 by a ``zero'' of p$(x; t) we mean a ``sign change.''
Moreover,

x1<'1<x2< } } } <'n&1<xn

and ['j]n&1
1 are extremal points for p(x; t).

We separate the next property as a lemma.

Lemma 2. Let ['j]n&1
1 be the zeros of p$(x; t). For each r>1 we have

p"(x; 'j){0 and

sign p"(x; 'j)=(&1)n& j&1, j=1, ..., n&1.

Proof. Since p$(x; t) is a perfect spline with n&r knots vanishing at
n&1 distinct points, it has by virtue of property (a) only simple zeros.
Thus p"(x; 'j){0 and the quantities p"(x; '1), ..., p"(x; 'n&r) are of alter-
nating sign. The sign can be determined from the normalization
p(r)(x; xn)=1 which implies p"(x; t)>0 for t>!n&r , and as a consequence,
p"(x; 'n&1)>0. The lemma is proved. K

In the simplest case when r=1 the perfect spline p(x; t) is a piece-wise
linear function which vanishes at x1 , ..., xn and the extremal points ['j]n&1

1

are given by 'j =(xj+xj+1)�2=! j , j=1, ..., n&1. Clearly the increase = of
xk will cause an increase by =�2 of 'k&1 and 'k only, while the other extremal
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points 'j will not change at all. Thus, we cannot expect that every 'j is a
strictly increasing function of any xk as it was in the smooth case of
generalized polynomials (compare with the results in the previous section).
On the other hand, if (again in the case r=1) all zeros x1 , ..., xn increase,
then every extremal point 'j will also increase. We shall show that such a
monotonicity takes place for perfect splines of any degree r and this will
imply Markov's interlacing property in a somewhat weaker form for
splines.

First we derive certain conclusions concerning Markov's interlacing
property for perfect splines following the method described in the previous
section. Then we go to a more careful study of the behaviour of ' as a func-
tion of xk using the total positivity structure of the spline kernel.

We start with the following observation which will be referred to as the
``spline version of Lemma 1.''

Assume that x=(x1 , ...xn) and y :=( y1 , ..., yn) interlace strictly, that is,

x1< y1<x2< } } } <xn< yn . (3)

Then there is no point ' for which p$(x; ')= p$(y; ')=0.
The case r=1 was proven above. We prove this for r>1 following the

proof of Lemma 1. Let us point out first the fact that in case r=2 no
extremal point ' of the perfect p(x; ') could coincide with a knot ! of
p(x; '). Indeed, otherwise the perfect spline p$(x; t) (which is of degree 1
and has exactly n&1 zeros) would have n&1 knots: ('i+'i+1)�2,
i=1, ..., n&2, and that particular '=!. This would contradict property (b).

Assume now that the assertion does not hold. Then there is a common
zero ' of p$(x; t) and p$(y; t). Consider the spline

Q(t) :=p(x; t)&:p(y; t) with :=
p(x; ')
p(y; ')

.

We have Q(')=Q$(')=0. Because of (3) any interval (xi , xi+1),
i=1, ..., n&1, contains an odd number of zeros of Q (since Q changes sign
on (xi , x i+1)). Therefore Q has at least 1 zero in (xi , xi+1) for i{ j and at
least 3 zeros, counting the multiplicities, in the interval (xj , xj+1) contain-
ing '. Note that the zeros in (xi , xi+1) are isolated from those in the
neighboring subintervals. Then by Rolle's theorem Q$ will have at least
n&2 sign changes and a double zero (if all above mentioned 3 zeros in
(xj , xj+1) coincide with ') or at least n sign changes (if ' does not coincide
with the other third zero of Q in the subinterval (xj , x j+1)). Applying again
Rolle's theorem we conclude that Q" will have at least n&1 sign changes
and finally Q(r)(t) will have at least n&r+1 sign changes. But if |:|>1,
then sign Q(r)(t)=&sign p(r)(y; t) and we arrive at contradiction since
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p(y; t) has exactly n&r knots. Similarly we get a contradiction in case
|:|�1 since then sign Q(r)(t)=sign p (r)(x; t). Our claim is proved. K

Remark. In case x and y do not interlace strictly (i.e., not all
inequalities xi� yi are strict), we can not apply the reasoning as in the
polynomial case and show that Q" has at least n&1 sign changes, since the
spline Q (unlike the polynomial) could vanish on a subinterval covering
many of the zeros [xi].

Assume now that ' is any zero of p$(x; t) of a fixed index. Suppose that
x0=(x0

1 , ..., x0
n), x0

1< } } } <x0
n , is a fixed set of points in [a, b]. Consider '

at x=(x1 , ..., xn) with xi=x0
i for i{k and xk free in a neighborhood U of

x0
k . Then

p$(x; '(x))#0

for each xk # U. The function '(x) is defined implicitly in U by the equa-
tion F (') :=p$(x; ')=0. Note that

�
�t

p$(x; t)| t='= p"(x; ')

and hence, by virtue of Lemma 2, F $('){0. Then, by the Implicit Function
Theorem, ' is differentiable in U. In Theorem 4 we give an explicit expres-
sion for �'��xk .

Lemma 3. Let ' be a zero of p$(x; t). Then

�'
�xk

�0.

Proof. For a fixed k, consider the set x= obtained from x by an =
increase of xk . Assume that the corresponding zero '(=) of p(x(=); t) is
smaller than '(0)='. Set $ :='&'(=). Then we get two splines p(x; t) and
p(y; t) :=p(x= ; t&$) with strictly interlacing zeros and then the spline
version of Lemma 1 leads to contradiction. Thus '(=)�'(0) for each suf-
ficiently small =. Since ' is a differentiable function of xk (and consequently
of =), we get '$(0)�0. The proof is completed. K

Theorem 3. Let x and y interlace. Then the zeros of p$(x; t) and p$(y; t)
also interlace. If the points x=(x1 , ..., xn) and y=( y1 , ..., yn) satisfy the
strict interlacing conditions

x1< y1<x2< } } } <xn< yn ,

then the zeros of p$(x; t) and p$(y; t) strictly interlace.
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Proof. Having Lemma 3, we prove that the zeros '(*) of p$(x(*); t)
(where xi (*) :=(1&*) x i+*yi) increase (not necessarily strictly) when *
goes from 0 to 1, remaining all time between the corresponding zeros of
p$(x; t) and p$(y; t). If, in addition, xi< yi for all i, then by virtue of the
spline version of Lemma 1 every zero 'j of p$(x; t) is distinct from the
corresponding zero of p$(y; t) and therefore the zeros of the derivatives
interlace strictly. We omit the details since they are given in the proof of
Theorem 2. K

Note that we can not conclude from Theorem 3 that the interlacing of x
and y with at least one strict inequality implies strict interlacing of the
zeros of p$(x; t) and p$(y; t). In order to get a proposition of this kind we
have to study carefully the dependence of ' on the zeros x1 , ..., xn . This is
our next task.

Denote by Sr&1(!1 , ..., !n&r) the linear space of all spline functions of
degree r&1 with knots !1 , ..., !n&r . According to property (c) of the perfect
splines, the zeros x=(x1 , ..., xn) and the knots !=(!1 , ..., !n&r) of p(x; t)
satisfy the interlacing condition (2). Then, by a well-known result due to
Schoenberg an Whitney [16], the collocation matrix

1 x1 } } } xr&1
1 (x1&!1) r&1

+ } } } (x1&!n&r)
r&1
+

J :=det _ b b . . . b b . . . b &1 xn } } } xr&1
n (xn&!1) r&1

+ } } } (xn&!n&r)
r&1
+

is non-singular. Thus the interpolation problem

s(xk)= fk , k=1, ..., n,

by splines s # Sr&1(!1 , ..., !n&r) has a unique solution for each given data
[ fk]. Denote by [lk(x; t)]n

k=1 the Lagrange fundamental functions for the
above interpolation problem. In other words, lk(x; t) is the unique spline
from Sr&1(!1 , ..., !n&r) satisfying the conditions

lk(x; xi)=$ki , i=1, ..., n

($ik being the Kronecker symbol). Then every spline f # Sr&1(!1 , ..., !n&r)
can be presented in the form

f (t)= :
n

k=1

f (xk) lk(x; t). (4)

The following property of lk(x; t) is crucial in our study of �'��xk .
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Lemma 4. If the zeros x and the knots ! of the perfect spline p(x; t)
satisfy the stronger Schoenberg�Whitney interlacing conditions

!i&r+1<xi<! i&1 , (5)

then lk(x; t){0 for each t � [x1 , ..., xn] (k=1, ..., n). Moreover, for each
zero ' of p$(x; t), we have

_(&1)k l $k(x; ')>0

with _=1 or _=&1, depending only on '.

Proof. Note that the conditions (5) cannot hold for r=1 and r=2. We
assume below that r>2.

The Lagrange fundamental spline lk(x; t) has the determinantal represen-
tation

lk(x; t)=
det Jk(t)

det J
,

where

1 x1 } } } xr&1
1 (x1&!1) r&1

+ } } } (x1&!n&r)
r&1
+

b b . . . b b . . . b
Jk(t) :=det _1 t } } } tr&1 (t&!1) r&1

+ } } } (t&!n&r)
r&1
+ &b b . . . b b . . . b

1 xn } } } xr&1
n (xn&!1) r&1

+ } } } (xn&!n&r)
r&1
+

(the row involving t is the kth row). Indeed, the numerator det Jk(t) is a
spline from Sr&1(!1 , ..., !n&r) and det Jk(xi)=0 for i{k, det Jk(xk)=det J.
Thus det Jk(t)�det J satisfies the interpolation conditions which determine
lk(x; t) uniquely. Observe now that the points

(t1 , ..., tn)=(x1 , ..., xk&1 , t, xk+1 , ..., xn)

in increasing order and the knots ! satisfy the interlacing conditions

!i&r<x i&1�t i�xi+1<! i

for each t # (&�, �). Thus det Jk(t){0 and consequently lk(x; t){0 for
each t{x1 , ..., xn . It also follows from the determinant expression of Jk(t)
(by considering the order of the rows of the matrix Jk(t)) that lk(x; t)
changes sign when t passes through a zero xi , i{k.
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It remains to show that l $k(x; ') changes sign alternatively when k varies
from 1 to n. Assume the contrary. Then there is a k such that

l $k(x; ') l $k+1(x; ')>0.

Define the spline

q*(t) :=(1&*) lk(x; t)&*lk+1(x; t).

Clearly q0(t)=lk(x; t) while q1(t)=&lk+1(x; t). The lemma will be proved
if we show that q$*(') does not vanish for * # (0, 1). Assume that q$*(')=0
for some * # (0, 1). Let ' # (xj , xj+1). Suppose first that j{k. Then we con-
sider the spline s(t) :=p(x; t)&:q*(t) with := p(x; ')�q*('). Note that
q*('){0 since lk(x; t) and &lk+1(x; t) have the same sign on (x j , xj+1).

Clearly s(')=0 by construction and s$(')= p$(x; ')&:q$*(')=0, by the
assumption. Thus s has a double zero at '. Note now that s(t) vanishes
also at certain point { # (xk , xk+1) since

s(xk)=&:q*(xk)=&:(1&*)

s(xk+1)=:*

and thus s(xk) s(xk+1)<0. Adding the obvious zeros x1 , ..., xk&1 , xk+2 , ...,
xn of s we see that s has at least n+1 zeros in (&�, �). All are isolated
since p(x; t), and hence s(t), is a polynomial of degree r with a non-zero
leading coefficient on each subinterval (!i , !i+1), i=0, ..., n&r, (!0 :=&�,
!n&r+1 :=�). By Rolle's theorem, s(r&1)(t) should have at least n&r+2
sign changes in (&�, �). But s(r&1)(t) is monotone on each subinterval
(!i , !i+1) changing alternatively the type of monotonicity (increasing,
decreasing) in each of the subsequent subintervals. This observation follows
from the fact that

s(r)(t)= p(r)(x; t) on (!i , ! i+1)

and p(r)(x; t) changes sign alternatively. Now it is seen that such a piece
wise monotone function can have at most one sign change in [!i&0, !i+1),
i=0, ..., n&r, and thus at most n&r+1 sign changes in (&�, �). We
arrive at contradiction in case ' � (xk , xk+1).

Assume now that ' # (xk , xk+1). If q*('){0, then we can proceed as in
the previous case and construct the spline s(t). By construction s(t)
vanishes at x1 , ..., xk&1 , xk+2 , ..., xn and has a double zero at '. Since
s(xk) s(xk+1)<0 and ' # (xk , xk+1), we conclude that s has at least 3 zeros
in (xk , xk+1) counting multiplicities, and hence totally n+1 zeros in
(&�, �). As we saw already Rolle's theorem then leads to a contradic-
tion. Thus the proof of the lemma will be completed if we show that
q*('){0.
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In order to do this, recall first that q*(t) vanishes at x1 , ..., xk&1 ,
xk+2 , ..., xn and these are isolated zeros. Assume in addition that q*(')=0.
Then ' would be at least a double zero of q*(t). Since q*(xk) q*(xk+1)<0,
we conclude that q*(t) has at least three zeros in (xk , xk+1), counting the
multiplicities (remember that r was assumed greater than 2). Then Rolle's
theorem will imply that q (r&1)

* (t) has at least n&r+2 sign changes. But
this is impossible since q*(t) is a spline of degree r&1 with n&r knots,
namely !1 , ..., !n&r . Thus q*('){0 and the lemma is proved. K

Theorem 4. Assume the zeros x and the knots ! of the perfect spline
p(x; t) satisfy the stronger Schoenberg�Whitney interlacing conditions (5).
Assume that the points x=(x1 , ..., xn) and y=( y1 , ..., yn) interlace with at
least one strict inequality xi< yi . Then the zeros of p$(x; t) and p$(y; t) inter-
lace strictly.

Proof. Let ' be a zero of p$(x; t). The theorem will be proved if we
show that �'��xk>0 for each k. To this aim, we next find an appropriate
expression for the derivative.

As we mentioned already (see Theorem A), given x, the coefficients
:1 , ..., :n and the knots !1< } } } <!n&r of the perfect spline

p(x; t)= :
r

j=1

:j t j&1+c _tr+2 :
n&r

i=1

(&1) i (t&!i)
r
+ &

(with c=(&1)n&r�r !) are uniquely determined as solutions of the non-
linear system of equations

:
r

j=1

:jx j&1
k +c _xr

k+2 :
n&r

i=1

(&1) i (xk&!i)
r
+&=0

for k=1, ..., n. Denote by D=D(x1 , ..., xn) the Jacobian determinant of this
system with respect to :1 , ..., :r , !1 , ...!n&r . Evidently

D=C det J

with some non-zero constant C, and therefore D{0 for each x with
x1< } } } <xn . By the Implicit Function Theorem, the [:j] and [!i] are
differentiable functions of x1 , ..., xn . Moreover,

�:j (x)
�xk

=&
Akj

D
, j=1, ..., r,

�!i (x)
�xk

=&
Ak, r+i

D
, i=1, ..., n&r,
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where Akj is obtained from D replacing column j by the column

(0, ..., 0, p$(x; xk), 0, ..., 0)T

with the non-zero entry in the k th position. Then clearly

Akj= p$(x; xk)(&1)k+ j Dkj ,

where Dkj is the corresponding subdeterminant of D obtained by deleting
row k and column j.

To find �'��xk we shall use the identity

�
�xk

p$(x; '(x))#0.

Since

p$(x; ')= :
r

j=2

( j&1) :j ' j&2+rc _'r&1+2 :
n&r

i=1

(&1) i ('&!i)
r&1
+ & ,

performing the differentiation with respect to xk , we get

:
r

j=2

( j&1) ' j&2 �:j

�xk

+2r(r&1) c :
n&r

i=1

(&1) i+1 ('&!i)
r&2
+

�!i

�xk
+ p"(x; ')

�'
�xk

=0.

Now making use of the explicit expression for the derivative of :j and !i we
rewrite the last equality in the form

&
p$(x; xk)

D _ :
r

j=2

( j&1) ' j&2(&1)k+ j Dkj+2r(r&1) c

_ :
n&r

i=1

(&1) i+1 ('&!i)
r&2
+ (&1)k+r+i Dk, r+i&= p"(x; ')

�'
�xk

.

Observe that the expression in the square brackets above is just the
expansion of the determinant

�0(x1) �1(x1) } } } �n&1(x1)

b b . . . b
Bk :=det _ 0 �$1(') } } } �$n&1(') &b b . . . b

�0(xn) �1(xn) } } } �n&1(xn)
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(with �j (t) :=t j&1, j=1, ..., r, �r+i :=2cr(&1) i (t&! i)
r&1
+ , i=1, ..., n&r)

along its k th row (which is written explicitly in the determinant above).
Clearly

Bk=
�

�x
D(x1 , ..., xk&1 , x, xk+1 , ..., xn)| x=' .

But D(x1 , ..., xk&1 , x, xk+1 , ..., xn)�D is the spline s from Sr&1(!1 , ..., !n&r)
satisfying the conditions

s(xi)=$ik , i=1, ..., n.

Thus s=lk(x; } ). Taking into account all these facts we finally obtain

& p$(x; xk) l $k(x; ')+ p"(x; ')
�'

�xk
=0.

Therefore

�'
�xk

=
p$(x; xk)
p"(x; ')

l $k(x; '). (6)

By Lemma 4, l $k(x; '){0. Thus �'��xk {0. Then Lemma 3 yields
�'��xk>0. The theorem is proved. K

Remark. Having (6) we can complete the proof of the theorem without
recourse to Lemma 3. We give below this alternative proof since the idea
could be used in the study of other systems for which the proof of Lemma 3
would not work (it uses the assumption that the translation of any
generalized polynomial is also a generalized polynomial).

Since p$(x; t) # Sr&1(!1 , ..., !n&r), it follows from (4) that

p$(x; t)= :
n

k=1

p$(x; xk) lk(x; t)

and therefore

p"(x; ')= :
n

k=1

p$(x; xk) l $k(x; ').

But both factors p$(x; xk) and l $k(x; ') alternate in sign as k goes from 1 to
n. Thus every term in the sum above is of the same sign _ and clearly
_=sign p"(x; '). Now (6) implies �'��xk>0.
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